
www.manaraa.com

 

Crowdsourcing Suggestions to 
Programming Problems for Dynamic 
Web Development Languages

 

Abstract 
Developers increasingly consult online examples and 
message boards to find solutions to common 
programming tasks. On the web, finding solutions to 
debugging problems is harder than searching for 
working code. Prior research introduced a social 
recommender system, HelpMeOut, that crowdsources 
debugging suggestions by presenting fixes to errors 
that peers have applied in the past. However, 
HelpMeOut only worked for statically typed, compiled 
programming languages like Java. We investigate how 
suggestions can be provided for dynamic, interpreted 
web development languages. Our primary insight is to 
instrument test-driven development to collect examples 
of bug fixes. We present Crowd::Debug, a tool for Ruby 
programmers that realizes these benefits.  

Keywords 
Debugging, Recommender Systems 

ACM Classification Keywords 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – Training, Help, and Documentation.  

General Terms 
Design, Human Factors 

Copyright is held by the author/owner(s). 

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada. 

ACM  978-1-4503-0268-5/11/05. 

Manuel Kallenbach 
Computer Science Department 
RWTH Aachen  
Lehrstuhl Informatik 10 
52056 Aachen, Germany 
manuel.kallenbach 
@rwth-aachen.de 
 
Björn Hartmann  
Computer Science Division 
University of California, Berkeley  
629 Soda Hall 
Berkeley, CA 94720 
bjoern@eecs.berkeley.edu 
 

 

Dhawal Mujumdar 
School of Information 
University of California, Berkeley 
102 South Hall 
Berkeley, CA 94720 
dhawal@ischool.berkeley.edu 
 
 
Brandon Liu 
Computer Science Division 
University of California, Berkeley  
387 Soda Hall  
Berkeley, CA 94720 
bran_liu@berkeley.edu 
 
 



www.manaraa.com

 

Introduction 
Understanding and successfully correcting program 
bugs is challenging. This is especially true for 
dynamically typed, interpreted languages that are 
popular for web development. Such languages often 
lack good analysis and debugging tools. Many 
programmers turn to web resources such as the Q&A 
site Stack Overflow for advice [7]. However, online 
sites and web search are often better at providing code 
examples for new functionality than for finding 
solutions to project-specific bugs. Reasons include the 
difficulty of searching for structurally similar code using 
engines optimized for plain text queries; and low 
incentives for developers to read others’ broken code. 

One way of sidestepping such problems is to collect 
examples of bug fixes without requiring programmers 
to explicitly publish such information, by observing the 
actions of programmers in their development 
environments. In particular, HelpMeOut [4] introduced 
the concept of crowdsourced bug fix suggestions: IDE 
instrumentation tracks compiler output and saves code 
changes that take a project from a broken to a fixed 
state into a shared database. To date, the HelpMeOut 
approach only applies to statically typed languages. 
Many web developers do not use such languages, but 
instead rely on dynamically typed, interpreted 
languages like Ruby and Python. In these languages, 
little to nothing is known about what type variables will 
have before execution. Thus, most program errors only 
occur at run-time, circumventing HelpMeOut’s main 
strategy for detecting problems.  

Our research investigates whether crowdsourced bug 
fix suggestions can be generated for dynamically typed 
languages, where they could be especially beneficial. 

We are developing Crowd::Debug, a development tool 
that collects and displays bug fix suggestions for the 
Ruby programming language. The primary insight 
behind Crowd::Debug is to leverage test-driven 
development (TDD) as the source of bug fix examples. 
In TDD, tests are written before functions are 
implemented and implementation code is only written 
or corrected when there are failing tests (see Figure 1). 
Failing tests thus indicate both missing functionality 
and incorrect program behavior. 

We implement Crowd::Debug for Ruby (and 
specifically, Ruby on Rails) because of its popularity for 
web development. Among Ruby programmers, test-
driven development is widely practiced: In a survey1 of 
4000 Ruby programmers, more than 85% use methods 
of test-driven development. Adhering to TDD offers 
reasonable expectations of code correctness and 
robustness, in the absence of good static analysis tools.  

The rest of this paper is organized as follows: We first 
present a review of related work and a scenario that 
demonstrates the benefit of our tool. We then discuss 
the implementation of our prototype, and findings from 
initial user studies. We conclude with an outlook to 
future work. 

Related Work 
Prior research falls into three areas: automated 
debugging tools, help for locating relevant resources, 
and help for understanding the causes of bugs.  

                                                   
1 http://survey.hamptoncatlin.com/survey/stats 

 

Figure 1: In test-driven 
development, tests are written 
before implementation code. 
Monitoring changes in test status 
enables Crowd::Debug to identify 
potential bug fixes. 



www.manaraa.com

 

Automated debugging tools attempt to fix code 
with minimal user involvement. ReAssert, a plugin 
for the Eclipse Java IDE, helps developers fix failed 
unit tests [3]. ReAssert does not alter the source 
code in order to fix the bug; rather it tries to alter 
the test. BugFix [5] suggests possible solutions to 
programming errors from a knowledge base. 
Machine learning techniques are used to improve 
the suggestions for a given bug. Once a bug is 
fixed, developers are able to enter a new bug fix 
description into the knowledge base, but have to do 
so manually. 

Code-specific search tools help developers locate 
relevant resources: Blueprint [2] integrates web 
search for code examples into the FlexBuilder IDE. 
Blueprint enhances query terms and adds links to 
copied source code indicating its origin on the web. 
DebugAdvisor [1] allows developers to search for 
information related to a bug with a fat query 
consisting of additional context of the bug. This 
query can include natural language text, core 
dumps, and debugger output. Results are retrieved 
from software repositories, logs, and bug 
databases. 

Tools for novice or end-user programmers 
emphasize understanding root causes of 
program bugs. Ko’s Whyline [6] allows 
programmers to ask “Why did” and “Why didn’t” 
questions about their program’s output. Backstop 
[8] aids novice programmers in fixing runtime 
errors of Java programming language by providing 
more user-friendly error messages when an 
uncaught exception occurs.  

Crowd::Debug presents examples of previous bug fixes 
related to the corresponding failing test. It provides 
code fixes in form of suggestions that other 
programmers have applied to closely related errors in a 
test-driven development environment. In contrast to 
ReAssert, Crowd::Debug does not alter any of the tests 
in order to successfully pass them.  

Scenario: Working with Crowd::Debug 
Jane, a programmer interested in web application 
development, wants to write a ‘dashboard’ for her 
blogging application. She writes a basic controller test: 
“GET dashboard should show a list of all the recent 
topics”. She runs her test suite and the Crowd::Debug 
interface is displayed, which shows that one test failed, 
with the exception “NoMethodError: You have a nil 
object when you didn’t expect it! The error occurred 
while evaluating nil.each” Normally she would search 
the web for this error message, but Crowd::Debug 
suggests two fixes. 

Both fixes show examples of code where Topic.all is 
called instead of Topic.first (see Figure 2), indicating a 
distinction between an element and a list of elements. 
This distinction would have been caught at compile 
time in Java, but in Ruby, such exceptions are not 
caught until the program is run. Jane implements the 
suggested change, and then runs the test suite again to 
see that all tests pass. 

The Crowd::Debug Prototype 
Our prototype is a web application that works on the 
client-server model. Crowd::Debug augments the 
existing test driven development process. Figure 3 
describes the 3 main components: 

 

Figure - 2A: Crowd::Debug shows 
the exception, backtrace, and code 
suggestions for a failed test. 
2B: Close-up of code suggestions. 



www.manaraa.com

 

A bug tracker collects information related to source 
code in both error and error-free state.  

The code repository stores source code associated 
with errors and their test cases in a database. The code 
repository returns code suggestions based on an 
exception message, and the associated file that caused 
the exception. 

The suggestion interface shows code fixes associated 
with the failing tests that are returned by the code 
repository. The suggestion interface also shows a 
backtrace of the program, exception messages and the 
location of the tests in the user’s file system.  

Implementation 
The suggestion interface is implemented by extending 
RSpec2, a popular Ruby testing framework. RSpec 
displays results for each test on the console when the 
test suite is run. Crowd::Debug instead shows this 
information in a web browser and adds suggestions. 
Multiple fixes are displayed vertically (see Figure 2). 

Crowd::Debug’s bug tracker sends the result of each 
test to the server. If the test fails, the bug tracker 
records information of the test exception. The bug is 
assigned an identifier (the name of the failing test), and 
the exception message, stack trace, and the state of all 
source files are recorded. File state is recorded using 
the Git version control system3. Stack trace information 
is helpful, since the exception may have been thrown 
deep inside a library or the Rails framework. When the 
same test passes later, the server is notified and the 
                                                   

2 http://rspec.info 
3 http://git-scm.com 

state of the source code is recorded to create a pair of 
broken and working code fragments. 

In order to facilitate matching of code between different 
projects, project-specific tokens, such as class names 
and string literals, are replaced with general 
placeholders such as CONST or STRING (see Figure 4). 
This generalization is performed for all code fragments 
during matching. Normalized Levenshtein distance 
between strings is used to compare both the exception 
messages and the stack traces with existing records in 
the database. We determined that weighing the 
exception message’s distance twice as much as the 
source code gave good results. The five most similar 
source matches are then returned to the user.  

Prototype Evaluation 
To evaluate the utility of our tool and determine the 
relevance of the system’s suggestions, we conducted 
an initial user study with 8 users.  

We asked our participants to write programs for two 
applications: an interactive quiz and a blog backend. 
Those implementing a blogging application were given 
an abstract task description such as: “A get request to 
the index action should render the index view”. 
Participants had to first write a test for the intended 
functionality, and then implement it. This particular 
task was chosen since in practice, different 
programmers would naturally write different 
implementations. We also asked our participants not to 
use code generation and to strictly follow test-driven 
development practices. 

Figure 3: In the Crowd::Debug 
architecture, an augmented test 
framework on the client side is used 
to collect fixes, and to query for 
fixes. A central server stores all fixes 
for many users. 

 

 

Figure 4: Examples of substitutions 
performed by the lexical analyzer to 
generalize code. 



www.manaraa.com

 

The authors first performed the task themselves to 
seed the database with fixes. Our user studies resulted 
in 8 person-hours of data.  

Results 
We used screen capture to record all sessions. We then 
counted the number of useful suggestions that were 
presented by Crowd::Debug. We considered a 
suggestion to be useful if its application led to the 
success of the failed test. 

Our user studies generated a total of 161 fixes. 
Participants queried Crowd::Debug 211 times, and 
Crowd::Debug suggested useful fixes in 120 cases 
(57%). 38 times (18%) suggestions were not useful, 
and for 30 bugs (14%), no fixes were suggested. In 23 
cases (11%) the tests contained errors that prevented 
execution to reach to the point where the 
Crowd::Debug interface was shown.   

Three participants in our user study were working for 
the same employer. We were particularly interested in 
their performance as a group, given that they shared 
similar coding practices and styles. For these 
participants, suggestions given by Crowd::Debug were 
useful in 63% of the cases versus 53% when compared 
to other participants. This suggests that common 
development practices can increase the utility of 
Crowd::Debug.  

Discussion and Future Work 
Benefits 
Like systems for compiled languages, Crowd::Debug 
can successfully suggest fixes to syntactical errors. 
These can be debugged with knowledge of a language’s 
small set of syntactical rules. 

Coding and Testing Conventions: Crowd::Debug is 
especially effective for errors that arise from being 
unfamiliar with the conventions of a framework or 
library, such as assumptions about the structure and 
naming of methods. In addition, if development 
conventions are consistent enough between 
programmers (e.g., if there are strong style guides 
within an organization), Crowd::Debug may act as an 
auto-complete tool for code that returns useful 
suggestions for frequently used implementation 
patterns. 

Leverages Expert Users: In HelpMeOut, expert 
programmers can only contribute meaningful fixes if 
they intentionally try to compile broken code. In 
Crowd::Debug, we take advantage of the fact that 
experts run failing tests, so they also contribute fixes.  

Limitations 
Detection of Errors: If an error does not raise an 
exception, then no information is provided. Logical 
errors, such as the ordering of results, cannot be 
detected at all. 

Code Privacy: Crowd::Debug does not employ any 
mechanisms to regulate visibility and sharing of code. 
Organizations may not want to expose their proprietary 
code to outsiders. Even within organizations, not 
everyone has an access to all code assets. A possible 
remedy is to add authorization levels to parts of code 
that should not be shared.  

Duplication of Fixes: Crowd::Debug fails to detect 
duplicate fixes. While presenting code suggestions, 
Crowd::Debug does not check whether code fixes are 
duplicated or not. This results in many structurally 



www.manaraa.com

 

identical fixes being stored. As a result, users may be 
presented with many nearly identical results in code 
suggestions. Future versions could suppress display of 
duplicates and instead display a variety of fixes. 

Result Relevance: Our system uses string edit 
distance to compare signals and return relevant fixes. 
In addition, the ranking of suggestions is fully 
automated in the current prototype. These measures 
may not be fine-grained enough for a large deployment 
with hundreds of contributing programmers. Future 
work should investigate other code comparison 
techniques and incorporate direct user ratings as a 
feedback signal. 

Scaling: It is an open question how the Crowd::Debug 
approach scales as codebase size increases. We 
hypothesize that the scope of each test is more 
important than total code size: if unit tests are 
narrowly scoped, Crowd::Debug should remain 
effective even as application complexity grows. 

Summary and Conclusions 
This paper presented our ongoing work on 
Crowd::Debug, a programming tool for suggesting 
solutions to program errors. Generating suggestions 
requires collecting examples, which is difficult in 
dynamic, interpreted languages.  The primary insight 
behind Crowd::Debug is to leverage test-driven 
development as the source of bug fix examples. We 
described the general architecture for such a system, 
our current prototype implementation, an initial 
evaluation and a discussion of the potential benefits 
and limitations of our tool.  

References 
1. Ashok, B., Joy, J., Liang, H., Rajamani, S.K., 

Srinivasa, G. and Vangala, V. DebugAdvisor: a 
recommender system for debugging. In 
Proceedings of the ACM SIGSOFT symposium on 
the foundations of software engineering, 
(ESEC/FSE‘09), 373-382. 

2. Brandt, J., Dontcheva, M., Weskamp, M. and 
Klemmer, S.R. Example-centric programming: 
integrating web search into the development 
environment. In Proceedings of CHI 2010, ACM 
(2010), 513-522. 

3. Daniel, B., Jagannath, V., Dig, D., and Marinov, D. 
ReAssert: Suggesting Repairs for Broken Unit 
Tests. In Proceedings of ASE 2009, 433-444. 

4. Hartmann, B., MacDougall, D., Brandt, J., and 
Klemmer, S. R. What Would Other Programmers 
Do? Suggesting Solutions to Error Messages. In 
Proceedings of CHI 2010, ACM (2010), 1019-1028. 

5. Jeffrey, D., Feng, M., Gupta, N., and Gupta, R. 
BugFix: A learning-based tool to assist developers 
in Fixing bugs. In Proceedings of ICPC ‘09, 70-79. 

6. Ko, A.J. and Myers, B.A. Designing the WhyLine: a 
debugging interface for asking questions about 
program behavior. In Proceedings CHI 2004, ACM 
(2004), 151-158. 

7. Mamykina, L., Manoim, B., Mittal, M, Hripcsak, G., 
and Hartmann, B. Design Lessons from the Fastest 
Q&A Site in the West. In Proceedings of CHI 2011, 
ACM (2011). 

8. Murphy, C., Kim, E., Kaiser, G. and Cannon, A. 
Backstop: a tool for debugging runtime errors, 
SIGCSE Bulletin 40, 1 (March 2008), 173-177.  


